Abstract
Beyond its role as a reward for pollinators, floral nectar also provides a habitat for specialized and opportunistic yeasts and bacteria. These microbes modify nectar chemistry, often altering mutualistic relationships between plants and pollinators in ways that we are only beginning to understand. Many studies on this multi-partite system have focused on either yeasts or bacteria without consideration of yeast-bacterium interactions, but recent evidence suggests that such interactions drive the assembly of nectar microbial communities and its consequences for pollination. Unexplored potential mechanisms of yeast-bacterium interactions include the formation of physical complexes, nutritional interactions, antibiosis, signaling-based interactions, and horizontal gene transfer. We argue that studying these mechanisms can elucidate how nectar microbial communities are established and affect plant fitness via pollinators.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have