Abstract

The PV panel absorbs solar irradiation flux on the surface. Part of the absorbed flux generates electricity, and a more significant amount converts into heat. Different methods are used to maintain photovoltaic at low temperatures. Heat is transferred in all heat transfer forms conduction, convection, and radiation. A photovoltaic panel model is developed in the current study that consists of an active cooling technique. Active cooling systems developed model uses domestic water as a thermoelectric generator's heat sink, and the photovoltaic temperature is a thermoelectric generator heat source. The proposed system depends on domestic water flow from the storage tank to the domestic building system at ambient temperature and under gravity flows and no extra power cost in the water flow process. The active cooling process keeps the PV panel at a steady temperature for almost 2 h and decreases the PV panel temperature in Winter, Spring, and Summer to 295K, 302K, and 311K, respectively, which is sufficient. The results also show the panel efficiency and electrical power generation enhancement by 4% and 20%, respectively, when the efficiency enhancement was steady for 6 h even under transient irradiation flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.