Abstract

AbstractDissolved black carbon (DBC) is an important recalcitrant fraction of marine dissolved organic matter. Riverine discharge is the largest known source of oceanic DBC; however, the significance of atmospheric deposition as a source of oceanic DBC remains poorly understood. In this study, year‐round aerosol sampling was carried out at a rural coastal site in Southeast Asia for DBC analysis using the benzene polycarboxylic acid (BPCA) method. The results revealed the uncertainty of an earlier estimate of the atmospheric deposition flux of DBC to the global ocean (FDBC), which assumed a linear correlation between DBC and water‐soluble organic carbon (WSOC). The correlation between DBC and WSOC depended on the sources of carbonaceous aerosols. The DBC/WSOC ratios were higher for the biomass burning aerosols. DBC was linearly correlated with black carbon (BC) for biomass or fossil fuel combustion aerosols. However, the DBC/BC ratios were higher for biomass burning aerosols (0.41 ± 0.22), whereas lower for fossil fuel combustion aerosols (0.04 ± 0.03). FDBC was revisited based on the relationship between DBC and BC. FDBC is primarily contributed by biomass burning aerosols and maybe previously underestimated. In this study, the DBC in aerosols had less condensed aromatic structures than the DBC present in the major rivers of the world, as shown by the BPCA compositions. This indicated that oceanic DBC sourced from atmospheric deposition was less likely to be removed by photodegradation and sedimentation, as compared to the DBC sourced from riverine discharge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call