Abstract

The pure and Yb-doped 3D ordered porous SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> with a controllable pore diameter (around 50 nm, 800 nm, and 1200 nm) were prepared by a simple template method. 3 at% Yb-doped 51.3 nm ordered porous SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (51.3 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /3%Yb) showed the largest specific surface area (70.08 m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /g) and the biggest oxygen vacancy in nitrogen adsorption–desorption and XPS analysis. The response of 51.3 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /3%Yb is 95 against 50 ppm HCHO at 108 °C, which is 3.7 times higher than 1228.0 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /3%Yb (27), 2.1 times higher than 806.0 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /3%Yb (45), and 2.4 times higher pure 57.3 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (40). However, the response of pure 57.3 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (40) is only 2.9 times higher than pure 1231.0 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (13.5), and 1.2 times higher than pure 832.1.0 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (30). Especially, the detectable formaldehyde (HCHO) of 51.3 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /3%Yb minimum limit has been reduced to 50 ppb and the relevant response is 3.5. Besides, 51.3 nm SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /3%Yb also exhibited high linearity (50 ppb-200 ppm), the fast response time (2 s) and excellent selectivity toward HCHO. Above all, for the same kinds of SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> nanomaterials, the smaller pore size is, the stronger sensitivity it will be, and under the effect of Yb doping, the gas sensitivity is enhanced more significantly with the decrease of the pore size. Besides, for the same kinds of SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> nanomaterials that have the same pore size, the gas-sensitive property is also significantly enhanced due to the doping of Yb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.