Abstract

Governments face a dilemma between public health and the economy while making strategic decisions on health during a pandemic outbreak. It is of great importance to forecast the number of cases in terms of strategic decisions to be taken by governments especially in outbreak periods and to manage the dilemma mentioned. One of the important issues today is the Covid-19 outbreak for almost all countries. Unfortunately, no effective vaccine or treatment has been found for Covid-19 yet. At the time of this study, however, it was reported that the total number of reported cases by the World Health Organization worldwide was more than thirteen million. Various quarantine measures have been necessary to deal with such a large epidemic. Quarantine measures taken by governments bring countries to face to face with the economic crisis. This creates economic uncertainties and puts governments under tremendous pressure to make accurate and least harmful strategic decisions. For these reasons, governments prefer to make strategic decisions for Covid-19 step by step observing the situation rather than making a sudden decision. If the number of pandemic cases could be predicted before a predetermined time, it would be used as an important guide for governments to manage public health and economic dilemma more accurately. Therefore, this study provides artificial neural network (ANN) and deep learning models (long-short term memory, LSTM networks) to forecast Covid-19 cases before 7-day. The proposed models were tested on real data for Turkey. The results showed that LSTM models performed better than ANN models in both cumulative cases and new cases on the training data set. Comparing the performance of the proposed models over the whole data set, it was observed that the ANN and LSTM algorithms gave competitive results. In addition, the cumulative case forecast performances of both ANN and LSTM models were observed to be better than the new case forecast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.