Abstract

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and refractory to current treatments. RBM24 is an RNA-binding protein and shows the ability to regulate tumor progression in multiple cancer types. However, its role in TNBC is still unclear. In this study, we analyzed publicly available profiling data from TNBC tissues and cells. Loss- and gain-of-function experiments were performed to determine the function of RBM24 in TNBC cells. The mechanism for RBM24 action in TNBC was investigated. RBM24 was deregulated in TNBC tissues and TNBC cells with depletion of SIPA1, YAP1, or ARID1A, three key regulators of TNBC. Compared to MCF10A breast epithelial cells, TNBC cells had higher levels of RBM24. Knockdown of RBM24 inhibited TNBC cell proliferation, colony formation, and tumorigenesis, while overexpression of RBM24 promoted aggressive phenotype in TNBC cells. YAP1 overexpression induced the expression of RBM24 and the RBM24 promoter-driven luciferase reporter. YAP1 was enriched at the promoter region of RBM24. Overexpression of RBM24 increased β-catenin-dependent transcriptional activity. Most importantly, knockdown of CTNNB1 rescued RBM24 aggressive phenotype in TNBC cells. Collectively, the YAP1/RBM24/β-catenin axis plays a critical role in driving TNBC progression. RBM24 may represent a novel therapeutic target for TNBC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call