Abstract
Weightlessness in space leads to bone loss, muscle atrophy, and impaired immune defense in astronauts. Mesenchymal stem cells (MSCs) play crucial roles in maintaining the homeostasis and function of the tissue. However, how microgravity affects the characteristics MSCs and the related roles in the pathophysiological changes in astronauts remain barely known. Here we used a 2D-clinostat device to simulate microgravity. Senescence-associated-β-galactosidase (SA-β-gal) staining and the expression of senescent markers p16, p21, and p53 were used to evaluate the senescence of MSCs. Mitochondrial membrane potential (mΔΨm), reactive oxygen species (ROS) production, and ATP production were used to evaluate mitochondrial function. Western blot and immunofluorescence staining were used to investigate the expression and localization of Yes-associated protein (YAP). We found that simulated microgravity (SMG) induced MSC senescence and mitochondrial dysfunction. Mito-TEMPO (MT), a mitochondrial antioxidant, restored mitochondrial function and reversed MSC senescence induced by SMG, suggesting that mitochondrial dysfunction mediates SMG-induced MSC senescence. Further, it was found that SMG promoted YAP expression and its nuclear translocation in MSCs. Verteporfin (VP), an inhibitor of YAP, restored SMG-induced mitochondrial dysfunction and senescence in MSCs by inhibiting YAP expression and nuclear localization. These findings suggest that YAP inhibition alleviates SMG-induced MSC senescence via targeting mitochondrial dysfunction, and YAP may be a potential therapeutic target for the treatment of weightlessness-related cell senescence and aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.