Abstract

About 30–40% of male infertility is due to unknown reasons. Genetic contributions to the disruption of spermatogenesis are suggested and amongst the genetic factors studied, Y chromosome microdeletions represent the most common one. Screening for microdeletions in AZFa, b and c region of Y chromosome showed a big variation among different studies. The purpose of this study was to investigate the prevalence of such deletions in Saudi men. A total of 257 patients with idiopathic oligo- or azoospermia were screened for Y chromosome microdeletions by 19 markers in AZF region. Ten (3.9%) patients had chromosomal rearrangements, six of them showed sex chromosome abnormalities and four patients had apparently balanced autosomal rearrengements. Eight of the remaining 247 patients (3.2%) with a normal karyotype and no known causes of impaired spermatogenesis had Y chromosome microdeletions. Among these, six patients had deletions in AZFc region, one case had a deletion in AZFb and another had both AZFa and AZFc deletions.In conclusion, our study shows that Y chromosome microdeletions are low in our population. We also report for the first time a case with unique point deletions of AZFa and AZFc regions. The lower frequency of deletions in our study suggest that other genetic, epigenetic, nutritional and local factors may be responsible for idiopathic oligo- or azoospermia in the Saudi population.

Highlights

  • 10–15% of couples are affected by infertility

  • We report for the first time a case with unique point deletions of AZFa and AZFc regions

  • The lower frequency of deletions in our study suggest that other genetic, epigenetic, nutritional and local factors may be responsible for idiopathic oligo- or azoospermia in the Saudi population

Read more

Summary

Introduction

A male factor can be diagnosed in approximately 50% of them and about 30–40% of male infertility is due to unknown origin [1]. With the advancement in molecular biology, three non-overlapping regions named "azoospermia factors" (AZFa, b, c from proximal to distal Yq region) have been defined as spermatogenesis loci [3]. The power of polymerase chain reaction (PCR) and the availability of sequence-tagged site (STS) maps made possible the detection of interstitial deletions in Yq11 region that was invisible by karyotyping [5]. Such microdeletions have been reported with varied prevalence in different populations and studies [6]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.