Abstract

SynopsisThe division of one polynomial by another is studied with the object of ascertaining the errors produced in the coefficients of successive remainders by small errors in the coefficients of the divisor. It is shown that the matrix which effects this transformation of errors is a polynomial in the rational canonical matrix for which the divisor polynomial is characteristic. The theory gives rise to a numerous class of iterative processes for finding an exact factor, such as the extant method based on the penultimate remainder, Bairstow's iterative method of finding a quadratic factor, and many others. Some new suggestions are made for accelerating convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.