Abstract

ABSTRACTA mixture of powdered magnesium-aluminum alloy (with composition close to Mg4A13), calcium silicide, and potassium nitrate as oxidizer was applied as metal fuel to incinerate various solid radioactive wastes (biomaterials, ion-exchange resin, etc.) and to produce glass-like materials. Materials obtained were examined with X-ray diffraction to identify mineral phases formed during incineration and vitrification processes. It has been established that solid waste incineration resulted in a formation of a slag product composed of stable mineral phases: oxyapatite, nagelschmidtite, spinels, karnegiite, which can be considered as host phases for radionuclide immobilization. Waste vitrification with metal fuel yields an amorphous phase which is predominant in final products, and a small amount of crystalline phases. Preliminary leaching tests were carried out. Leach rate of 137Cs in deionized water at 20 °C was found to be by order of magnitude 10−5 g-cm−2 day−1. Leach rates of 90Sr and 238Pu were approximately one order of magnitude lower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.