Abstract

Emissions from the incineration of solid waste are a global public health concern, but little attention has been paid to previously unrecognized chemical compounds that are generated by waste incineration and released into the atmosphere. We conducted nontarget analysis of organic chemicals formed during waste incineration by Fourier-transform ion cyclotron resonance mass spectrometry and gas chromatography-quadrupole time-of-flight mass spectrometry. Using toxicity data in the ToxCast library and predicted toxicity data for traditional priority polycyclic aromatic hydrocarbons and 2,3,7,8-tetrachlorodibenzo-p-dioxin, we prioritized 13 compounds including hexachloro-1,3-butadiene, 9 of which are reported here for the first time as constituents of emissions from the incineration of solid waste and hexachloro-1,3-butadiene was included in the Stockholm Convention in 2017. The predicted activity of these pollutants to androgen receptors and to the aryl hydrocarbon receptor were comparable to, or higher than, the 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene. In addition, some alkylated polycyclic aromatic hydrocarbons and heteroatom polycyclic aromatic hydrocarbons were also identified in solid waste incineration processes, peak areas of which were 1–2 orders of magnitude higher than dioxins and 1–3 orders of magnitude lower than their parent polycyclic aromatic hydrocarbons. Our study can provide information for better recognizing and regulating the emissions of organic pollutants formed by the incineration of solid waste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.