Abstract

The solid-state119Sn cross-polarization (CP) magic angle spinning (MAS) NMR spectra of a series of triaryltin chlorides of the form Ar3SnCl have been acquired. The indirect spin-spin coupling constants (J(119Sn-35Cl)), quadrupolar-dipolar shifts (d(119Sn-35Cl)), and the119Sn chemical shift tensors were extracted. For the spectrum of triphenyltin chloride (I) the validity of the first-order perturbation approximation was tested by comparing results of both the perturbation and cubic-equation approaches and a variable-temperature NMR study undertaken to investigate the influence of the previously reported molecular motion in the solid. The X-ray crystal structures of the tris(o-tolyl)tin chloride (II) and tris(p-tolyl)tin chloride (IV) complexes have been examined. They belong to the monoclinic and triclinic space groups P21/n and P[Formula: see text], respectively, which are different from the previously reported tris(m-tolyl)tin chloride (III) complex, which crystallizes in the space group R3 and has threefold molecular symmetry. The structures and NMR properties of the complexes with meta-substituents are quite different from those with ortho- or para-substituents having axially symmetric shift tensors with small spans and larger J values.Key words: aryltin chlorides, magic angle spinning NMR, tin-chlorine spin-spin coupling,119Sn chemical shift tensor, crystal structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call