Abstract

The evolution of the K-edge x-ray absorption near-edge spectroscopy (XANES) spectrum is investigated for an aluminum plasma expanding from the solid density down to 0.5 g/cm{3}, with temperatures lying from 5 down to 2 eV. The dense plasma is generated by nanosecond laser-induced shock compression. These conditions correspond to the density-temperature region where a metal-nonmetal transition occurs as the density decreases. This transition is directly observed in XANES spectra measurements through the progressive formation of a preedge structure for densities around 1.6 g/cm{3}. Ab initio calculations based on density functional theory and a jellium model have been efficiently tested through direct comparison with the experimental measurements and show that this preedge corresponds to the relocalization of the 3p atomic orbital as the system evolves from a dense plasma toward a partially ionized atomic fluid.

Highlights

  • HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not

  • The documents may come from teaching and research institutions in France or abroad, or from public or private research centers

  • The evolution of the K-edge x-ray absorption near-edge spectroscopy (XANES) spectrum is investigated for an aluminum plasma expanding from the solid density down to 0:5 g=cm3, with temperatures lying from 5 down to 2 eV

Read more

Summary

Introduction

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. Ab initio calculations based on density functional theory and a jellium model have been efficiently tested through direct comparison with the experimental measurements and show that this preedge corresponds to the relocalization of the 3p atomic orbital as the system evolves from a dense plasma toward a partially ionized atomic fluid.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.