Abstract
Binuclear pivalate complexes of 3d transition metals (manganese, iron, cobalt, and nickel) with the same ligand environment and a lantern structure have been studied by X-ray photoelectron spectroscopy. The M2p, M3s, C1s, O1s, and N1s X-ray photoelectron spectra have been examined. A redistribution of electron density in the OCO group has been revealed. It has been shown that the theory fits the experimental data on the energy separation between the high- and low-spin components in the M3s spectra and between the spin doublet components in the M2p spectra. It has been demonstrated that the iron, cobalt, and nickel complexes are paramagnetic at room temperature, whereas the manganese complex exhibits antiferromagnetic properties. There is a correlation between the size of the 3d subshell of the transition metal atom and the M-O and M-N bond lengths.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have