Abstract

Ethnopharmacological relevanceXiaoyaosan (XYS) is a traditional prescription for the treatment of liver depression and qi stagnation, and pharmacological studies have shown that XYS has great potential to reverse depression. However, anti-depression targets and the mechanism of XYS are still not entirely clear. Aim of the studyThe present study aims to explore and verify the anti-depression mechanism of XYS. Materials and methodsThe antidepressant effect of XYS was assessed in rats with depression induced by chronic unpredictable mild stimulation (CUMS). The levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in different brain regions were measured using ELISA. The expression of organic cation transporters (Octs) were detected by western blot and immunohistochemical techniques. Then, Decynium-22 (D22), an Octs inhibitor, was injected into the prefrontal cortex (PFC) to verify the correlation between Octs and depression-like behavior. Then, the effects of XYS on the behavior, neurotransmitter concentration, and Octs expression in D22-induced rats were examined. Finally, primary astrocytes were used to verify the mechanism of XYS exerting anti-depressant activity by regulating Octs. ResultsThe result showed that XYS had a significant positive impact on the behavior of depression rats induced by CUMS. XYS also improved the secretion of 5-HT, DA, and NE in the PFC, as well as the promotion of Oct1, Oct2, and Oct3 expression in the PFC. These results suggest that XYS has the potential to alleviate depression by enhancing the secretion of neurotransmitters. This may be related to XYS regulation of Oct's expression. When the expression of Octs was inhibited in the PFC, rats exhibited behavior similar to depression, and XYS was able to reverse this behavior, indicating that Octs play a significant role in the development of depression and XYS may exert its antidepressant effects through the regulation of Octs. Furthermore, the study also found that dopamine uptake decreased after inhibiting the expression of Octs, and XYS-containing serum could reverse the downregulation of Oct1 and Oct3 and promote intracellular dopamine homeostasis in the astrocytes. Overall, XYS may exert antidepressant effects by promoting dopamine uptake to improve neurotransmitter transport by regulating the protein expression of Oct1 and Oct3 in astrocytes. ConclusionsThe antidepressant effect of XYS may be attributed to its ability to regulate the expression of Oct1 and Oct3 in astrocytes of the PFC, thereby promoting neurotransmitter transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call