Abstract

Determining the structure-odor relationship has always been a very challenging task. The main challenge in investigating the correlation between the molecular structure and its associated odor is the ambiguous and obscure nature of verbally defined odor descriptors, particularly when the odorant molecules are from different sources. With the recent developments in machine learning (ML) technology, ML and data analytic techniques are significantly being used for quantitative structure-activity relationship (QSAR) in the chemistry domain toward knowledge discovery where the traditional Edisonian methods have not been useful. The smell perception of odorant molecules is one of the aforementioned tasks, as olfaction is one of the least understood senses as compared to other senses. In this study, the XGBoost odor prediction model was generated to classify smells of odorant molecules from their SMILES strings. We first collected the dataset of 1278 odorant molecules with seven basic odor descriptors, and then 1875 physicochemical properties of odorant molecules were calculated. To obtain relevant physicochemical features, a feature reduction algorithm called PCA was also employed. The ML model developed in this study was able to predict all seven basic smells with high precision (>99%) and high sensitivity (>99%) when tested on an independent test dataset. The results of the proposed study were also compared with three recently conducted studies. The results indicate that the XGBoost-PCA model performed better than the other models for predicting common odor descriptors. The methodology and ML model developed in this study may be helpful in understanding the structure-odor relationship.Communicated by Ramaswamy H. Sarma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.