Abstract

BackgroundVSMC proliferation plays a key role in atherosclerosis, but the role of XPD in VSMC proliferation remains unknown. We investigated the expression of XPD, which is involved in cell cycle regulation, and its role in VSMC proliferation response to atherogenic stimuli.Material/MethodsHuman umbilical vein VSMCs were transfected with recombinant plasmid pEGFP-N2/XPD and pEGFP-N2 and incubated with PDGF-BB in vitro. Cell viability was determined by MTT assay. The expressions of XPD, GSK3β, p-GSK3β, CDK4, and cyclin D1 protein were detected by Western blot analysis. Cell cycle was examined by flow cytometry.ResultsPDGF inhibited the expression of XPD in VSMCs and promoted VSMC proliferation. Overexpression of XPD significantly augmented cell cycle arrest, and attenuated protein expression levels of CDK4 and cyclin D1 in VSMCs. XPD overexpression suppressed the effects of PDGF-BB in promoting G1/S transition and accelerating protein expression levels of CDK4 and cyclin D1. XPD diminished the phosphorylation of GSK3β, and SB216763 inhibited the reduction effect of XPD on CDK4 and cyclin D1.ConclusionsXPD induces VSMC cell cycle arrest, and the activation of GSK3β plays a crucial role in inhibitory effect of XPD on VSMC proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.