Abstract
Pitx3 plays a well understood role in directing development of lens, muscle fiber, and dopaminergic neurons; however, in Xenopus laevis, it may also play a role in early gastrulation and somitogenesis. Potential downstream targets of pitx3 possess multiple binding motifs that would not be readily accessible by conventional promoter analysis. We isolated and characterized pitx3 target genes lhx1 and xnr5 using a novel three-fluor flow cytometry tool that was designed to dissect promoters with multiple binding sites for the same transcription factor. This approach was calibrated using a known pitx3 target gene, Tyrosine hydroxylase. We demonstrate how flow cytometry can be used to detect gene regulatory changes with exquisite precision on a cell-by-cell basis, and establish that in HEK293 cells, pitx3 directly activates lhx1 and represses xnr5. Developmental Dynamics 246:657-669, 2017. © 2017 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Developmental dynamics : an official publication of the American Association of Anatomists
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.