Abstract

Mitogen-activated protein kinases, originally known as microtubule-associated protein (MAP) kinases, are activated in response to a variety of stimuli. Here we report that microtubule-depolymerizing agents such as colchicine or nocodazole induced strong activation of MAP kinases including JNK, ERK, and p38. This effect was markedly attenuated by parkin, whose mutations are linked to Parkinson disease (PD). Our previous study has shown that parkin stabilizes microtubules through strong interactions mediated by three independent domains. We found that each of the three microtubule-binding domains of parkin was sufficient to reduce MAP kinase activation induced by microtubule depolymerization. The ability to attenuate microtubule depolymerization and the ensuing MAP kinase activation was abrogated in B-lymphocytes and fibroblasts derived from PD patients with parkin mutations such as exon 4 deletion. Such mutations produced truncated parkin proteins lacking any microtubule binding domain and prevented parkin from protecting midbrain dopaminergic neurons against microtubule-depolymerizing toxins such as rotenone or colchicine. Consistent with these, blocking MAP kinase activation in midbrain dopaminergic neurons by knocking down MAP kinase kinases (MKK) significantly reduced the selective toxicity of rotenone or colchicine. Conversely, overexpression of MAP kinases caused marked toxicities that were significantly attenuated by parkin. Thus, the results suggest that parkin protects midbrain dopaminergic neurons against microtubule-depolymerizing PD toxins such as rotenone by stabilizing microtubules to attenuate MAP kinase activation.

Highlights

  • Mitogen-activated protein kinases are a superfamily of kinases that include the extracellular signal-related kinases (ERK1/2),2 Jun N-terminal kinases (JNK1/2/3), and p38 pro

  • In the present study we examined the impact of parkin on microtubule-associated protein (MAP) kinase activation induced by microtubule depolymerizaing RNA; TUNEL, TdT-mediated dUTP-X nick end labeling; siRNA, small interfering RNA; E3, ubiquitin-protein isopeptide ligase; PKN, parkin; Ubl, ubiquitin-like domain; IBR, in-between RING finger; GFP, green fluorescent protein; HEK, human embryonic kidney; MES, 4-morpholineethanesulfonic acid

  • The results suggest that parkin protects midbrain dopaminergic neurons against microtubule-depolymerizing Parkinson disease (PD) toxins by stabilizing microtubules to rein in MAP kinase activation

Read more

Summary

Introduction

Mitogen-activated protein kinases are a superfamily of kinases that include the extracellular signal-related kinases (ERK1/2),2 Jun N-terminal kinases (JNK1/2/3), and p38 pro-. The ability to attenuate microtubule depolymerization and the ensuing MAP kinase activation was abrogated in B-lymphocytes and fibroblasts derived from PD patients with parkin mutations such as exon 4 deletion. The results suggest that parkin protects midbrain dopaminergic neurons against microtubule-depolymerizing PD toxins such as rotenone by stabilizing microtubules to attenuate MAP kinase activation.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call