Abstract
Domain-Wall Memory (DWM) structures typically bundle nanowires shifted together for parallel access. Ironically, this organization does not allow the natural shifting of DWM to realize \textit{logical shifting} within data elements. We describe a novel 2-D DWM cross-point (X-Cell) that allows two individual nanowires placed orthogonally to share the X-Cell. Each nanowire can operate independently while sharing the value at the X-Cell. Using X-Cells, we propose an orthogonal nanowire in the Y dimension overlaid on a bundle of X dimension nanowires for a cross-DWM or XDWM. We demonstrate that the bundle shifts correctly in the X-Direction, and that data can be logically shifted in the Y-direction providing novel data movement and supporting processing-in-memory. We conducted studies on the requirements for physical cell dimensions and shift currents for XDWM. Due to the non-standard domain, our micro-magnetic studies demonstrate that XDWM introduces a shift current penalty of 6.25% while shifting happens in one nanowire compared to a standard nanowire. We also demonstrate correct shifting using nanowire bundles in both the X- and Y- dimensions. Using magnetic simulation to derive the values for SPICE simulation we show the maximum leakage current between nanowires when shifting the bundle together is $\le3$% indicating that sneak paths are not problematic for XDWM.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have