Abstract

The XANES/EXAFS data and quantum chemical simulations presented in this study demonstrate several features of the chemistry of arsenic compounds found in the condensates and solids generated in landfill gas (LFG) processing carried out for renewable natural gas (RNG) production. The XANES data show the decrease in the position of the absorption edge of As atoms, similar to that characteristic for sulfur-containing As solutes and solids. The EXAFS data show that the As-O and As-S distances in these matrixes are similar to those in thioarsenates. Quantum-chemical calculations demonstrated the close agreement between the experimental and modeled As-S and As-O distances determined for a range of methylated and thiolated arsenic solutes. These calculations also showed that the increase of the number of the As-S bonds in the coordination shell of arsenic is accompanied by a consistent decrease of the charges of As atoms. This decrease is correlated with the number of the As-S bonds, in agreement with the trend observed in the XANES data. These results provide insight into the intrinsic chemistry and reactivity of As species present in LFG matrixes; they may be helpful for the development of treatment methods to control arsenic in these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.