Abstract

Experimental verification of the effects of radially sheared electric-field (or potential) formation in plasmas is one of the most critical issues to understand the physics basis for plasma confinement improvements. In the GAMMA 10 tandem mirror, recent experimental results show shear formation effects on the suppression of not only coherent drift waves but turbulence-like fluctuations without any coherent phasing relation during the ion-confining potential formation period. Contours of the central-cell soft x-ray brightness show spatially and temporally fluctuated structures during a weak sheared period by the use of the 50 channel microchannel plate system. A new x-ray tomography system is developed for analyzing temporally and spatially resolved plasma behavior in the presence or absence of these shear formation effects in GAMMA 10. The system consists of two 48-channel silicon semiconductor detector arrays with different viewing angles. X-ray energy responses of the new detector arrays along with response uniformity of detector channels have been characterized using synchrotron radiation at the Photon Factory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.