Abstract

Formation of catenanes by proteins is rare, with few known examples. We report herein the X-ray structure of a catenane dimer of lytic transglycosylase SltB1 of Pseudomonas aeruginosa. The enzyme is soluble and exists in the periplasmic space, where it modifies the bacterial cell wall. The catenane dimer exhibits the protein monomers in a noncovalent chain-link arrangement, whereby a stretch of 51 amino acids (to become a loop and three helices) from one monomer threads through the central opening of the structure of the partner monomer. The protein folds after threading in a manner that leaves two helices (α1 and α2) as stoppers to impart stability to the dimer structure. The symmetric embrace by the two SltB1 molecules occludes both active sites entirely, an arrangement that is sustained by six electrostatic interactions between the two monomers. In light of the observation of these structural motifs in all members of Family 3 lytic transglycosylases, catenanes might be present for those enzymes, as well. The dimeric catenane might represent a regulated form of SltB1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.