Abstract

The time-integrated x-ray emission from a hot, dense iron plasma has been recorded. The iron plasma was created when a target with a 1000-Å-thick iron layer buried beneath 1000 Å of plastic was irradiated by a 300 fs pulse of 249 nm laser light at an intensity of approximately 1017 W cm−2. Two models have been used to construct a synthetic x-ray spectrum. The first employs detailed, spectroscopically accurate atomic data and the second uses a local thermodynamic equilibrium opacity model. The detailed model shows fairly good agreement with experiment whereas the opacity model only shows agreement in the gross features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.