Abstract

Skyrmions are intriguing quasiparticles in the field of condensed matter due to their unique physics and promising applications in spintronic devices. However, despite abundant studies on skyrmions with a topological charge of Q = 1, there have been only few on those with higher Q (≥2) due to their intrinsic instability in Dzyaloshinskii–Moriya interaction (DMI) systems. In this work, applying the frustrated J1−J2 Heisenberg spin model, we investigate the stability of high-Q skyrmions and the manipulation of their diameters in a hexagonal close-packed lattice through atomistic simulations and first-principles calculations. First, three spin textures, called spiral, skyrmion, and ferromagnetic, are identified by varying (J1, J2), and it is shown that skyrmions with higher Q can occupy a wider range of (J1, J2) values. The diameter of the skyrmions can then be finely tuned using the frustration strength (|J2/J1|), the single-ion anisotropy (K), and an external magnetic field (B). As B increases, the high-Q skyrmions split into skyrmions with smaller Q and can be annihilated by a larger B. Furthermore, we find that the CoCl2 monolayer satisfies the criteria for a frustrated J1−J2 magnet, and its magnetic behaviors align with the aforementioned conclusions. In addition, high-Q skyrmions are identified in the CoCl2 monolayer, and the corresponding energy barriers for skyrmion collapse are investigated. Our findings pave the way for prospective spintronic applications based on high-Q and nanoscale skyrmionic textures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.