Abstract

The major problem in the NiMn2O4 system has been the determination of the valencies and the cation distribution between the two sublattices of the inverse spinel structure, in which both manganese and nickel can adopt more than one valence state. X-ray photoelectron spectroscopy (XPS) was used to elucidate the valence distribution of the manganese and nickel ions. The results showed that identification of the three Mn and two Ni species in the nickel manganite phase is possible, enabling the validity of crystal structure configurations, proposed in the literature, to be assessed. A small amount of copper, added as CuO to the system, was found to be present in both monovalent and divalent states, the Cu+ ions inducing the creation of the large amount of tetravalent Mn observed. This led to a larger number of sites for electron hopping, the mechanism of conduction, and consequently the electrical conductivity of the Cu doped material is much higher than the undoped NiMn2O4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.