Abstract

We present a simple x-ray phase imaging method that utilizes the sample-induced distortion of a high contrast random intensity pattern to quantitatively retrieve the two-dimensional phase map at the exit surface of a coherently illuminated sample. This reference pattern is created by placing a sheet of sandpaper in the x-ray beam, with the sample-induced distortion observed after propagation to the detector, a meter downstream. Correlation analysis comparing a single “sample and sandpaper” image to a reference “sandpaper only” image produces two sensitive differential phase contrast images, giving the sample phase gradient in vertical and horizontal directions. These images are then integrated to recover the projected phase depth of the sample. The simple experimental set-up, retention of flux, and the need for only a single sample image per reconstruction suggest that this method is of value in imaging a range of dynamic processes at both synchrotron and laboratory x-ray sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call