Abstract

X-ray in-line phase contrast has recently been combined with CO2 angiography for high-resolution small-animal vascular imaging at low radiation dose. In this paper we further investigate the potential and limitations of this method and demonstrate observation of vessels down to 8 μm in diameter, considerably smaller than the 60 μm previously reported. Our in-line phase-contrast imaging system is based on a liquid-metal-jet-anode x-ray source and utilizes free-space propagation to convert phase shifts, caused by refractive index variations, into intensity differences. Enhanced refractive index variations are obtained through injection of CO2 gas into the vascular system to replace the blood. We show rat-kidney images with blood vessels down to 27 μm in diameter and mouse-ear images with vessels down to 8 μm. The minimum size of observable blood vessels is found to be limited by the penetration of gas into the vascular system and the signal-to-noise ratio, i.e. the allowed dose. The diameters of vessels being gas-filled depend on the gas pressure and follow a simple model based on surface tension. A theoretical signal-to-noise comparison shows that this method requires 1000 times less radiation dose than conventional iodine-based absorption contrast for observing sub-50 μm vessels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call