Abstract

BackgroundThis study aimed to determine whether synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (IL-PCI) can be used to investigate the morphological characteristics of tumor neovascularization in a liver xenograft animal model.MethodsA human hepatocellular carcinoma HCCLM3 xenograft model was established in nude mice. Xenografts were sampled each week for 4 weeks and fixed to analyze tissue characteristics and neovascularization using SR-based X-ray in-line phase contrast computed tomography (IL-XPCT) without any contrast agent.ResultsThe effect of the energy level and object–to-detector distance on phase-contrast difference was in good agreement with the theory of IL-PCI. Boundaries between the tumor and adjacent normal tissues at week 1 were clearly observed in two-dimensional phase contrast projection imaging. A quantitative contrast difference was observed from weeks 1 to 4. Moreover, 3D image reconstruction of hepatocellular carcinoma (HCC) samples showed blood vessels inside the tumor were abnormal. The smallest blood vessels measured approximately 20 μm in diameter. The tumor vascular density initially increased and then decreased gradually over time. The maximum tumor vascular density was 4.29% at week 2.ConclusionIL-XPCT successfully acquired images of neovascularization in HCC xenografts in nude mice.

Highlights

  • This study aimed to determine whether synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (IL-PCI) can be used to investigate the morphological characteristics of tumor neovascularization in a liver xenograft animal model

  • Synchrotron radiation (SR) microvascular angiography combined with high-resolution and high-speed imaging systems provide an effective approach to study tumor angiogenesis

  • The aim of the present study was to investigate the morphological characteristics of tumor neovascularization in a human hepatocellular carcinoma (HCC) xenograft model using SR-based In-line X-ray phase contrast computed tomography (IL-XPCT)

Read more

Summary

Introduction

This study aimed to determine whether synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (IL-PCI) can be used to investigate the morphological characteristics of tumor neovascularization in a liver xenograft animal model. In vitro studies at the SPring-8 BL20B2 facility in Japan, using barium sulfate as a contrast agent, have revealed the micro-vessel architecture of VX2 carcinoma specimens [6]. Neovascularization in Lewis lung cancer tumor located deep inside the body was observed using a three-dimensional reconstruction of micro-CT imaging with barium sulfate as contrast agent [8]. All these studies used absorption contrast between the contrast medium and surrounding tissues

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.