Abstract

In this study, microstructural evolution and phase transition of nickel-free Fe-18Cr-18Mn (wt. %) austenitic steel powders, induced by mechanical alloying, were investigated. X-ray diffraction, scanning electron microscopy, and microhardness testing techniques were used to observe the changes in the phase composition and particle size as functions of milling time. The first 30 h of mechanical alloying was performed in an argon atmosphere followed by nitrogen for up to 150 h. X-ray diffraction results revealed that the Fe-fcc phase started to form after 30 h of milling, and its fraction continued to increase with alloying time. However, even after 150 h of milling, weak Fe-bcc phase reflections were still detectable (~3.5 wt. %). Basic microstructure features of the multi-phase alloy were determined by X-ray profile analyses, using the whole powder pattern modeling approach to model anisotropic broadening of line profiles. It was demonstrated that the WPPM algorithm can be regarded as a powerful tool for characterizing microstructures even in more complicated multi-phase cases with overlapping reflections. Prolonging alloying time up to 150 h caused the evolution of the microstructure towards the nanocrystalline state with a mean domain size of 6 nm, accompanied by high densities of dislocations exceeding 1016/m2. Deformation-induced hardening was manifested macroscopically by a corresponding increase in microhardness to 1068 HV0.2. Additionally, diffraction data were processed by the modified Williamson–Hall method, which revealed similar trends of domain size evolutions, but yielded sizes twice as high compared to the WPPM method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.