Abstract

We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O...), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H(2)O)(6)](2+), [Mn(H(2)O)(5)OH](+), and [Mn(H(2)O)(5)NH(3)](2+). An application of the method, with comparison between theory and experiment, is presented for the solvated Mn(2+) ion in water and three Mn coordination complexes, namely [LMn(acac)N(3)]BPh(4), [LMn(B(2)O(3)Ph(2))(ClO(4))], and [LMn(acac)N]BPh(4), where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B(2)O(3)Ph(2) represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.