Abstract

The influence of absorbed γ-quantum irradiation doses Dγ (60Co isotope) on the structural parameters of Ti3Al single-phase compounds is experimentally investigated. The structural characteristics are defined more accurately using X-ray diffractometry. On account of the results of structural studies, it is found that exposure to low γ-radiation doses (e.g., Dγ = 1 × 103 Gy) generates the nonequilibrium state of the Ti3Al structure. An increase in the absorbed dose (to Dγ = 1 × 105 Gy) stimulates the formation of a metastable radiation-induced state, which is identified by diffraction-reflection splitting, an increase in the crystal-lattice volume, and changes in the parameters of the fine structure (the coherent-scattering-region size decreases to 13 nm, and the defect concentration increases).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call