Abstract

Reducing the thermal budget of epitaxial thin film growth has been one of the biggest challenges for the electronics industry. In this report, the room-temperature epitaxial growth of titanium nitride (TiN) thin films (∼75 nm) on (0001) Al2O3 substrates is demonstrated using a pulsed laser deposition technique. In TiN thin films, the epitaxial relationship is established by X-ray diffraction for (111)TiN//(0001) Al2O3 and TiN // Al2O3 which corresponds to a 30° rotation of titanium and nitrogen atoms with respect to the hexagon arrangement of aluminum atoms. An increase in the defect concentration is shown in the room-temperature thin film growth as compared to the ones grown at elevated temperature. A shift and broadening of the diffraction peaks is observed in the thin films as compared to the bulk value, indicating a higher residual tensile strain with decreasing growth temperature and an increase in defect concentration at room temperature. The increased defect concentration observed at...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call