Abstract

Compton backscattering imaging (CBI) is a technique that uses ionizing radiation to detect the presence of low atomic number materials on a given target. Unlike transmission x-ray imaging, the source and sensor are located on the same side, such that the photons of interest are scattered back after the radiation impinges on the body. Rather than scanning the target pixel by pixel with a pencil-beam, this paper proposes the use of cone-beam coded illumination to create the compressive x-ray Compton backscattering imager (CXBI). The concept was developed and tested using Montecarlo simulations through the Geant4 application for tomography emissions (GATE), with conditions close to the ones encountered in experiments, and posteriorly, a test-bed implementation was mounted in the laboratory. The CXBI was evaluated under several conditions and with different materials as target. Reconstructions were run using denoising-prior-based inverse problem algorithms. Finally, a preliminary dose analysis was done to evaluate the viability of CXBI for human scanning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.