Abstract

X-ray beam deflection control method using a single flexible glass capillary is proposed to illuminate a fixed sample at a target position with different incidence angle. A 700 mm-long capillary with a bore diameter of 50 micron and an outer diameter of 2 mm, which gives suitable flexibility for the critical curvature, was employed for the test experiment in SPring-8. The X-ray beam with a wavelength of 0.1 nm was introduced into the capillary, whose axis at the input side was finely adjusted to be parallel to the X-ray beam axis with swivel-, rotation- and translation stages. The divergence angle of output beam was measured and is 1–2 mrad. By moving the output-side capillary-support transversely to the beam axis, the beam deflection angle was changed over the range of about 80 mrad. The maximum throughput was larger than 60 % in efficiency, and 8 × 1010 photons/s in flux. Mapping with the beam deflection system has also been demonstrated for X-ray absorption measurement of a test sample composed of copper and nickel films. The materials were identified by changing the X-ray photon energy around their absorption edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.