Abstract
Machine learning is a major branch of artificial intelligence that has been widely implemented in optical applications. Here we establish and validate two fully connected feed forward artificial neural networks (ANNs) based on the multilayer perceptron incorporating double hidden layers. The constructed ANNs act as regressors to efficiently predict the divergence and deflection angles of beams emerging from the beam-converging and -deflecting lenses, respectively. The target lens specifications can then be inversely queried by the desired beam divergence and deflection angles contained in the forecasted datasets. With the aid of meticulous hyperparameter tuning, the optimized ANNs of the beam-converging and -deflecting lenses yield high coefficient of determination (R2) scores of 9.9964e–1 and 9.9933e–1, and low mean squared error (MSE) losses of 1.0e–5 and 2.2e–5, respectively. Compared with the conventional optical design, the proposed scheme has been confirmed to substantially alleviate the complexity of lens design, provide rich lens specification solutions for different beam divergence and deflection angles, and drastically reduce the computation time by over four orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.