Abstract
A versatile set of methods for analyzing x-ray energy spectra and photon flux has been developed for laser plasma accelerator experiments driven by picosecond lasers. Forward fit provides extrapolated broad energy spectrum measurements, while Ross pair and differential average transmission analysis provide directly measured data points using a particular diagnostic. Combining these methods allows the measurement of x-ray energy spectra with improved confidence. We apply the methods to three diagnostics (filter wheel, stacked image plate spectrometer, and step wedge), each sensitive to a different region of x-ray energies (<40 keV, 35-100 keV, and 60-1000 keV, respectively), to characterize the analysis methods using laser-driven bremsstrahlung x-rays. We then apply the methods to measure three x-ray mechanisms, betatron, inverse Compton scattering, and bremsstrahlung, driven by a laser plasma accelerator. The analysis results in the measurement of x-ray energy spectra ranging from 10 keV to 1 MeV with peak flux greater than 1010 photons/keV/Sr. The combined analysis methods provide a robust tool to accurately measure broadband x-ray sources (keV to MeV) driven by laser plasma acceleration with picosecond, kilojoule-class lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.