Abstract

Contact metals (Au, Ir, and Cr) are deposited on bulk WSe2 under ultra-high vacuum (UHV, 1 × 10−9 mbar) and high vacuum (HV, 5 × 10−6 mbar) conditions and subsequently characterized with x-ray photoelectron spectroscopy (XPS) to elucidate the effects of reactor base pressure on resulting interface chemistry, contact chemistry, and band alignment. Au forms a van der Waals interface with WSe2 regardless of deposition chamber ambient. In contrast, Ir and Cr form a covalent interface by reducing WSe2 to form interfacial metal selenides. When Cr is deposited under HV conditions, significant oxygen incorporation is observed resulting in the thermodynamically favorable formation of tungsten oxyselenide and a substantial concentration of CrxOy. Regardless of contact metal, WOx (2.63 < x < 2.92) forms during deposition under HV conditions which may positively affect interface transport properties. Cr and Ir form unexpectedly large electron and hole Schottky barriers, respectively, when deposited under UHV conditions due to interfacial reactions that contribute to anomalous band alignment. These results reveal the true interface chemistry formed between metals and WSe2 under UHV and HV conditions and demonstrate the impact on the Fermi level position following contact formation on WSe2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.