Abstract

Heterogeneous membrane structures with rigid elements are often used in flexible electronic and aerospace structures. In heterogeneous membrane structures under tension, the disturbance stress caused by the rigid element changes the stress distribution of the membrane, and it is difficult to calculate the stress distribution of the heterogeneous membrane structure using the traditional stress functions method. In this article, we propose a method for calculating the non-uniform stress field based on the Eshelby elastic inclusion theory, which states that tension membrane structures contain square rigid elements. The wrinkle distribution of the rigid element at different positions is predicted by a stress analysis, and the influence of the position and size of the rigid element on the wrinkle distribution of the membrane is studied by a finite-element simulation. The research results show that the wrinkle pattern of the stretched membrane can be controlled by changing the position of the rigid element to meet some special needs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call