Abstract

The magnetorheological (MR) fluid damper-based semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds. In this paper, a novel modal controller using wavelet packet transform (WPT) is proposed for the vibration control of distributed structures. In the proposed control system, the WPT method is utilized to decompose the acceleration measurement and select the modes containing most of the WPT energy component as the dominant modes. Then, a modal controller is designed to control the dominant modes and the optimal active control force is solved. Finally, Clipped-optimal control law is adopted to determine the voltage applied to each MR damper. A Kalman-filter observer, which estimates the full controlled modal states from local accelerometer feedbacks, is designed for rendering the controller to be more applicable to distributed structures with a large number of degrees of freedom. A numerical example of a stadium roof structure installed with MRF-04K damper is presented. The effectiveness of the controller is evaluated under both Tianjin and El Centro earthquake excitations. The superior performance and adaptability of the controller for versatile loading conditions are demonstrated through the comparison with traditional truncated modal controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.