Abstract

Although direct methanol fuel cell offers high energy use efficiency and low pollution emission, the lack of suitable electrode materials poses a great challenge to its commercial application. Herein, a facile and scalable approach is developed to fabricate a hybrid electrocatalyst consisting of strongly coupled worm-shape Pt nanocrystals and nitrogen-doped low-defect graphene (N-LDG) sheets. Interestingly, it is found that the formation of Pt nanoworms (NWs) is induced by the N atoms in the high-quality carbon matrix, which also allows the integration of their respective structural advantages and leads to a strong synergetic coupling effect. As a result, the obtained Pt NW/N-LDG catalyst exhibits an extremely high mass activity of 1283.1 mA mg-1 toward methanol oxidation reaction, accompanied by reliable long-term stability and good antipoisoning ability, which are dramatically enhanced as compared with conventional Pt nanoparticle catalysts dispersed on undoped LDG, reduced graphene oxide, and commercial carbon black supports.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.