Abstract

A worm algorithm is proposed for the two-dimensional spin glasses. The method is based on a low-temperature expansion of the partition function. The low-temperature configurations of the spin glass on square lattice can be viewed as strings connecting pairs of frustrated plaquettes. The worm algorithm directly manipulates these strings. It is shown that the worm algorithm is efficient, particularly if free boundary conditions are used. We obtain accurate low-temperature specific heat data consistent with a form c approximately T-2 exp [-2J/( kB T) ] , where T is temperature and J is coupling constant, for the two-dimensional +/- J spin glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.