Abstract

Electromigration (EM) has emerged as a major reliability concern for interconnects in advanced technology nodes. Most of the existing EM analysis works focus on the power lines. There exists a limited amount of work which analyzes EM failures in the signal lines. However, various emerging spintronic-based memory technologies such as the Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) and the Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) have high current densities as compared to the conventional Static Random Access Memory (SRAM). These high current densities can lead to EM failures in the signal lines such as bit-line (BL) of these memories. Furthermore, these signal lines have workload-dependent stress as opposed to the conventional DC stress of power distribution networks. In this work, we model the EM failures in the BL of a typical STT memory array with realistic workloads. The analysis is based on physics-based EM model, which is calibrated based on industrial measurement data. The results show that the current densities in the STT arrays can be large enough to cause EM failures in the signal lines with running realistic workloads and that these failures are highly workload-dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.