Abstract

Purpose: Traffic volume in empty container depots has been highly volatile due to external factors. Forecasting the expected container truck traffic along with having a dynamic module to foresee the future workload plays a critical role in improving the work efficiency. This paper studies the relevant literature and designs a forecasting model addressing the aforementioned issues. Methodology: The paper develops a forecasting model to predict hourly work and traffic volume of container trucks in an empty container depot using a Bayesian Neural Network based model. Furthermore, the paper experiments with datasets with different characteristics to assess the model's forecasting range for various data sources. Findings: The real data of an empty container depot is utilized to develop a forecasting model and to later verify the capabilities of the model. The findings show the performance validity of the model and provide the groundwork to build an effective traffic and workload planning system for the empty container depot in question. Originality: This paper proposes a Bayesian deep learning-based forecasting model for traffic and workload of an empty container depot using real-world data. This designed and implemented forecasting model offers a solution with which every actor in the container truck transportation benefits from the optimized workload.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.