Abstract
The study of the circadian molecular clock in skeletal muscle is in the very early stages. Initial research has demonstrated the presence of the molecular clock in skeletal muscle and that skeletal muscle of a clock-compromised mouse, Clock mutant, exhibits significant disruption in normal expression of many genes required for adult muscle structure and metabolism. In light of the growing association between the molecular clock, metabolism, and metabolic disease, it will also be important to understand the contribution of circadian factors to normal metabolism, metabolic responses to muscle training, and contribution of the molecular clock in muscle-to-muscle disease (e.g., insulin resistance). Consistent with the potential for the skeletal muscle molecular clock modulating skeletal muscle physiology, there are findings in the literature that there is significant time-of-day effects for strength and metabolism. Additionally, there is some recent evidence that temporal specificity is important for optimizing training for muscular performance. While these studies do not prove that the molecular clock in skeletal muscle is important, they are suggestive of a circadian contribution to skeletal muscle function. The application of well-established models of skeletal muscle research in function and metabolism with available genetic models of molecular clock disruption will allow for more mechanistic understanding of potential relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.