Abstract

We have devised a method to optimize the performance of organic field-effect transistors (OFETs) by controlling the work functions of graphene electrodes by functionalizing the surface of SiO2 substrates with self-assembled monolayers (SAMs). The electron-donating NH2-terminated SAMs induce strong n-doping in graphene, whereas the CH3-terminated SAMs neutralize the p-doping induced by SiO2 substrates, resulting in considerable changes in the work functions of graphene electrodes. This approach was successfully utilized to optimize electrical properties of graphene field-effect transistors and organic electronic devices using graphene electrodes. Considering the patternability and robustness of SAMs, this method would find numerous applications in graphene-based organic electronics and optoelectronic devices such as organic light-emitting diodes and organic photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call