Abstract

Many text classifications depend on statistical term measures or synsets to implement document representation. Such document representations ignore the lexical semantic contents or relations of terms, leading to losing the distilled mutual information. This work proposed a synthetic document representation method, WordNet-based hybrid VSM, to solve the problem. This method constructed a data structure of semantic-element information to characterize lexical semantic contents, and support disambiguation of word stems. As a template, lexical semantic vector consisting of lexical semantic contents was built in the lexical semantic space of corpus, and lexical semantic relations are marked on the vector. Then, it connects with special term vector to form the eigenvector in hybrid VSM. Applying algorithm NWKNN, on text corpus Reuter-21578 and its adjusted version, the experiments show that the eigenvector performs F1 measure better than document representations based on TF-IDF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.