Abstract

ABSTRACT Quantitative analysis of large-scale political text data in the form of word embeddings has great potential for systematising differences between political parties. We examine the differences between embeddings obtained from speakers from the two competitors for the PM position in Sweden (Social Democrats and Moderates) over a 30-year period. The goal is to compare how off-the-shelf general pre-trained models perform relative to pre-training on a smaller dataset from the same domain. In the analysis, we focus on two types of concepts: issues and ideological terms. We find that generally, the off-the-shelf pre-trained models lead to more reliable results and greater emphasis on ideological differences between the studied parties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.