Abstract
Engineered nanostructure-reinforced lightweight polymer composites with superior electromagnetic (EM) shielding effectiveness (SET) are widely employed in high-end applications such as aerospace and microelectronic devices. Recently, carbon nanotube-based three-dimensional nanostructures have shown enormous potential due to unmatched processability, mechanical, and electronic properties. In this study, we present for the first time, highly permeable FeCo-based core-double shell wool-ball-type microcubes chemically enclosed by dielectric silica and conducting multiwalled carbon nanotubes (MWCNTs) sequentially; the resulting reinforced nanocomposites with low filler loading produced superior SET of −35 dB at 18 GHz for a specimen of 3 mm thickness. The excellent dispersion of microstructures in the soft matrix owing to the encapsulation of hard FeCo magnets by MWCNTs ensures low density and excellent flexibility for high-precision applications. The nanoengineered core-dual shell strategy for fabricating mag...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have