Abstract

Optically transparent wood has been fabricated by structure-retaining delignification of wood and subsequent infiltration of thermo- or photocurable polymer resins but still limited by the intrinsic low mesopore volume of the delignified wood. Here we report a facile approach to fabricate strong transparent wood composites using the wood xerogel which allows solvent-free infiltration of resin monomers into the wood cell wall under ambient conditions. The wood xerogel with high specific surface area (260 m2 g–1) and high mesopore volume (0.37 cm3 g–1) is prepared by evaporative drying of delignified wood comprising fibrillated cell walls at ambient pressure. The mesoporous wood xerogel is compressible in the transverse direction and provides precise control of the microstructure, wood volume fraction, and mechanical properties for the transparent wood composites without compromising the optical transmittance. Transparent wood composites of large size and high wood volume fraction (50%) are successfully prepared, demonstrating potential scalability of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.